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Abstract

Micropolar fluids in transient analysis have been investigated numerically to determine heat transfer by natural con-

vection between concentric and vertically eccentric spheres with specified isothermal boundary conditions. Calculations

were carried out systematically for several different eccentricities and a range of Rayleigh numbers to determine the

average Nusselt numbers which are affected by the micropolar parameters (F) on the flow and temperature fields.

The skin friction stress on the walls has also been studied and discussed. The governing equations, in terms of vorticity,

stream function, temperature and angular momentum are expressed in a spherical polar coordinate system. Results

were obtained for steady and transient heat-transfer in vertically eccentric spheres at a Prandtl number of 0.7, with

the Rayleigh number ranging from 103 to 5 · 105, for a radius ratio of 2.0 and eccentricities varying from �0.625 to

+0.625, and for the value of micropolar parameters are 0, 1 and 5 respectively. Comparisons are attempted between

the Newtonian fluid and micropolar fluid.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection heat transfer of micropolar fluids

in a confined enclosure is a research subject of great

importance commonly needed in medical, mechanical,

chemical and nuclear engineering industries for various

applications including the shear force on the blood cir-

culation in the body, heavy casting production pro-

cesses, the analysis of polymeric fluids flowing into a

mold, nuclear reactor design, and many other practical

situations. For some engineering applications, such as

gyroscopes, the predication of transient temperature
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distribution, heat transfer rate and shear stress on the

spherical wall from initial state to steady state is very

important. The microscopic effects arise from the

local structure and micromotions of the fluid ele-

ments. It is thus highly desirable to understand the

micro-rotation and couple stress using micropolar fluids

in the convective heat transfer processes, which are asso-

ciated with time-dependent properties so that suitable

conditions for steady and transient flows growth can

be developed for various industrial and scientific

applications.

As a result, extensive experimental and theoretical

work dealing with flow and associated heat transfer

characteristics of natural convection in annuli between

two isothermal concentric spheres has been reported

in the literature. Experimental heat transfer results for
ed.
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Nomenclature

B dimension material parameter, L2/j

Cf skin friction coefficient

Cp specific heat at constant pressure

e vertical eccentricity

F dimensionless micropolar parameter, j/l
g local gravitational acceleration

h heat transfer coefficient

j micro-inertia density

k thermal conductivity

L annular gap, �ro � �ri

N dimensionless angular velocity

N angular velocity

Nu local Nusselt number, hL/k

Nu average Nusselt number, hL/k

Pr Prandtl number, m/a
r dimensionless coordinate, �r=L
�r radial coordinate

R dimensionless radial profile of outer sphere,

R=L
R radial profile of outer sphere

Ra Rayleigh number, gbDTL3=ma
R* radius ratio, ro/ri
t time

T dimensionless temperature, ðT � T oÞ=
ðT i � T oÞ

T temperature

v velocity

V dimensionless velocity, vL/a

Greek symbols

a thermal diffusivity

b thermal expansion coefficient

c spin-gradient viscosity

DT temperature difference between spheres,

T i � T o

e dimensionless vertical eccentricity, e/L

g radial coordinate in transformed plane,

(r � ri)/(ro � ri)
h dimensionless angular coordinate, �h=p
�h angular coordinate

h* angular position at vortex center

j vortex viscosity

k dimensionless material parameter, c/jl
l dynamic viscosity

m kinematic viscosity

q fluid density

s dimensionless time, ta/L2

w dimensionless stream function, �w=aL
�w stream function in spherical coordinates

x dimensionless vorticity, �xL2=a
�x vorticity

Subscripts

i, o inner and outer

max maximum
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isothermal concentric spheres, the inner being hotter,

have been obtained in Ref. [1] for air, in Ref. [2] for

water and silicone oils. Semi-analytical studies of the

problem have been done in Refs. [3,4]. Numerical results

have been reported in Refs. [5,6] for radius ratios up to

2.0 in their investigations. In Ref. [7], a numerical solu-

tion for transient natural convection with a large range

of Rayleigh number has been computed. Numerical re-

sults for transient natural convection between eccentric

spheres have been reported in Refs. [8,9].

As far as a micropolar fluid is concerned, the theory

was in sequence developed by Eringen [10–12], in which

the local effects resulting from microstructure and gyra-

tion motions of the fluid elements were taken into con-

sideration. The non-Newtonian behavior of liquid

crystals, ferro liquids and polymeric fluids were being

studied at many researchers. A detailed review made

by Ariman et al. [13] demonstrated that for linear, vis-

cous, and isotropic fluids the non-Newtonian behavior

of the above mentioned liquids can be modeled by the

micropolar fluid theory. The effect of microstructure

on the thermal convection in a rectangular box of fluid
heated from below, was analyzed by Jena and Bhatta-

charyya [14], who revealed that the dimensionless

parameters vortex viscosity and micropolar heat con-

duction are important to the onset of convection. There

are only few studies investigating the effect of micro-

structure on the free convection heat transfer in spheri-

cal annuli.

To further extend the existing knowledge on natural

convection heat transfer of micropolar fluids in spherical

enclosures, this study considers the laminar transient

natural convection in concentric and eccentric spherical

annuli with isothermal boundary conditions. A finite dif-

ference solution is obtained for the governing equations

in terms of stream function, vorticity, angular momen-

tum and energy in a spherical polar coordinate system.

The effects of eccentricity, Rayleigh number, and fluid

property on the flow fields and heat transfer characteris-

tics are discussed respectively. The details of the method

are described in the next section. We wish to point out

that our formulations were represented by general form

for various natural convection problems involving con-

centric and vertically eccentric spheres.
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2. Mathematical formulation

The geometric configuration of the physical system is

a concentric or vertically eccentric arrangement of two

circular spheres of radii ro and ri located at O 0 and O,

respectively. The eccentricity of the outer sphere is mea-

sured by the distance e. If the outer sphere is placed

above the central position, e has a positive value, other-

wise e is negative. For a natural convective heat transfer

problem, the largest heat transfer variation due to eccen-

tricity occurs when the direction of e is aligned with the

gravitational direction. Therefore, this study focuses on

the problem that e is vertically shifted.

The space between the inner and outer spheres is

filled with a viscous and incompressible micropolar

fluid. Initially, the annulus is at a uniform temperature

To, and a quiescent state is assumed, while the tempera-

ture of the inner sphere is suddenly changed to a higher

temperature Ti and the outer sphere is maintained at To.

The heat transfer takes place between the spheres by nat-

ural convection. A model to describe the process has

been derived making the following assumptions: (1)

the flow within the annulus is laminar, (2) all fluid prop-

erties, are taken to be constant, except for the density

variation with temperature in the buoyancy term, i.e.

the Boussinesq approximation is valid, (3) the flow is

symmetrical about the vertical axis which is parallel to

the line of gravity acceleration, (4) viscous dissipation

and radiation effects are neglected.

A spherical polar coordinate system (r,h,u) and grids

system were chosen as shown in Fig. 1. To deal with the

numerical formulation associated with the complex

physical domain of the vertically eccentric annulus, a
Fig. 1. Coordinate and grids system for spherical annulus.
radial coordinate transformation is adopted to map

the eccentric annular gap into a unit sphere. The outer

sphere radius r = R(h) is transformed into the unit

sphere g = 1, while the inner sphere radius r = ri is trans-

formed into the pole g = 0. This transformation is ob-

tained by defining a new radial coordinate as

g ¼ r � ri

RðhÞ � ri

ð1Þ

where R(h) denotes variable dimensionless profile of the

outer sphere measured from the center of the inner

sphere, which is symmetric with respect to the vertical

axis in any angular position of u-direction and is

expressed by

RðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � e2 sin h
q

� e cos h ð2Þ

The governing equations for the two-dimensional

problem in dimensionless terms can be written as
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The associated initial and boundary conditions for

the problem considered are

for s = 0

T ¼ 0; x ¼ w ¼ N ¼ 0;
ow
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From the above formulation, the governing parame-

ters for the present problem are the Rayleigh number

Ra, the Prandtl number Pr, the radius ratio R*, the

material parameter B, the micropolar parameter F and

the eccentricity e.
The local and average Nusselt number at inner and

outer radii are defined as:
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3. Numerical method

To solve the problem, the governing equations as

well as initial and boundary conditions were discritized

by the finite difference method. Eqs. (3)–(6) expressing

the vorticity transport, streamfunction, angular momen-

tum and energy transport equations, together with ini-

tial and boundary conditions in Eqs. (13)–(16), provide

a complete description of the problem. Since the flow

is known to be parabolic in time but elliptic in space,

the solution for the problem can only be marched in

time. In this study, the time-dependent vorticity, angular

momentum transport and energy transport equations

were solved by employing the alternating direction

implicit (ADI) finite technique [15,16], while the stream

function equation was solved by employing the suc-

cessive over-relaxation (SOR) technique [17,18]. The

first and second derivatives in space were approximated

by central difference while the time derivatives were

approximated by forward difference. Derivative at the

boundaries were approximated by a three point forward

or backward difference. The results presented in this arti-

cle are all obtained by using a mesh of 41 · 41 cells.

Numerical test calculations were also performed for dif-

ferent time step sizes. Two different time step sizes

depending on the geometry, have been used for the

calculations: 1 · 10�4 for e = 0.0 and 5 · 10�5 for

e = ±0.625.

The solution was considered convergent when the rel-

ative error between the new and old values of the field

variables U during every time step was less than a pre-

scribed criterion (10�4), where U represents x, w, N

and T.

j Unew � Uoldjmax

j Unewjmax

6 10�4 ð19Þ
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Further, the steady-state solution was determined by

requiring the relative error between the present and next

time step values of all field variables for the inner and

outer spheres to be:

j Unþ1 � Unjmax

j Unþ1jmax

6 10�4 ð20Þ

where the superscripts n and (n + 1) indicate the nth and

(n + 1)st time step, respectively.
4. Results and discussion

Numerical calculations have been performed system-

atically for a spherical annulus of radius ratio fixed at

2.0, the Prandtl number fixed at 0.7 and the material

parameters fixed at B = 1 and k = 1. The Rayleigh num-

bers ranging from 103 to 5.0 · 105, the eccentricities

varying from �0.625 to +0.625 and the micropolar

parameters using with F = 0, 1 and 5 respectively, where

F = 0 is the micropolar fluid model in the limiting case,

which is equivalent to the problem of Newtonian fluid.

It is convenient to checking the validity of the numerical

results. The numerical results are verified by comparing

the present results with those of earlier worker [3–8]. Ta-

ble 1 compares the present calculated results with earlier

workers [3–8]. The heat-transfer results are in excellent

agreement with the finding of authors [7,8]. It was de-

picted by the average Nusselt number vs. Rayleigh as

shown in Fig. 11.

Fig. 2(a) shows an evolution of streamlines and iso-

therms for a Rayleigh number of 103. Fig. 2(b) presents

a corresponding evolution for a Rayleigh number of 105.

This evolution of results is designed to demonstrate the
Table 1

Comparison of the calculated average Nusselt number Nu, maximum

center h* at steady-state, as functions of R* = 2.0, Pr = 0.7, e = 0.0, F

Ra

1.0 · 103 Present results

Mack and Hardee [3]

Singh and Chen [4]

Astill et al. [5]

Garg [6]

Chu and Lee [7]

Chiu and Chen [8]

1.0 · 104 Present results

Chu and Lee [7]

Chiu and Chen [8]

1.0 · 105 Present results

Chu and Lee [7]

Chiu and Chen [8]

5.0 · 105 Present results

Chu and Lee [7]

Chiu and Chen [8]
effects of Rayleigh number (Ra) and micropolar para-

meter (F) on the heat and fluid flow patterns in the con-

centric annulus. Because the problem is symmetric to the

axis, each annulus contains the isotherms on the left and

streamlines on the right. To facilitate the comparison of

different configurations, the number of contours within

each geometric structure is kept constant at nine for

temperature and at six for stream function. Since the in-

ner sphere is kept hotter, the hot fluid near the inner

sphere rises upward due to thermal expansion. The

uprising plume is then cooled by the colder fluid near

the upper part of outer sphere. The colder and denser

fluid will eventually flow downward along the surface

of the outer sphere.

About the low value of Rayleigh number of Ra = 103

in Fig. 2(a), as micropolar parameter (F) increases, it is

found that the position of vortex center of the eddy

shifts downward along the annular space while the max-

imum value of the stream function also decreases. When

the value of micropolar parameter F = 5 shows that the

maximum value of stream function wmax = 0.710 with

the angular position of vortex center of the crescent-

shaped lies at h* = 90.0� from the upper vertical line

symmetry about midgap position. At Ra = 105, as

shown in Fig. 2(b), the fluid motion becomes stronger,

as indicated by the increased absolute value of the

stream function and the vortex center of the eddy

shifted upward. Examination of the isothermal patterns

also reveals that laminar convection was the dominant

mode of heat transfer; on the contrary, the pseudocon-

duction heat transfer regime appeared in Fig. 2(a).

Simultaneously, the maximum value of the stream

function decreases with the increase of micropolar

parameter (F).
value of stream function wmax and angular position of vortex

= 0 and Ra = 103–5 · 105

Nu wmax h*

1.1003 3.2265 81�
1.1200 3.2100 77�
1.1200 3.4900 79�
1.1010 – –

1.1006 – –

1.0990 3.2090 81�
1.1021 3.2360 81�

1.9601 17.3948 67.5�
1.9730 17.2800 67.5�
1.9110 17.9400 67.5�

3.3851 35.9192 54�
3.4890 36.5300 54�
3.3555 35.9240 54�

4.9147 52.5188 49.5�
5.3780 53.4200 49.5�
4.8657 – –



Fig. 2. Isotherms (left) and streamlines (right) for R* = 2.0, Pr = 0.7 and e = 0.0 at different micropolar parameters F = 0, 1, 5: (a)

Ra = 103; (b) Ra = 105.
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About the high value of Rayleigh number of

Ra = 105 in Fig. 3(a) and (b), which illustrate that the

streamline and isotherm distributions at the various

micropolar parameters (F) for positive and negative

eccentricity, respectively. For positive eccentric geome-

try (Fig. 3(a)) within such favorable configuration for

convective motion, the streamline distributions were de-

picted in the larger feature for the eccentric geometry

space. It is evident that the convective flows are both lar-

ger and stronger than for those of the concentric annulus

(Fig. 2(b)); the maximum value of stream functions were

observed to be further pronounced. On the other hand,

the negative eccentric geometry provides the least favor-

able circumstance for the development of natural con-

vection. Then again, we have also observed that the

stream function decreases with the increase of micropo-

lar parameter (F) under positive (e = 0.625) and negative

(e = �0.625) eccentricity.
Fig. 4 presents a series of streamline configurations,

isotherms and velocity vectors for radius ratio of 2.0,

Prandtl number of 0.7, Rayleigh number of 5 · 105,

micropolar parameter of 5, and the eccentricity of 0.0;

Figs. 5 and 6 present a corresponding series for the

eccentricities of 0.625 and �0.625 respectively. The

streamlines and isotherms are displayed on the left-hand

side while the velocity fields are displayed on the right-

hand side. The velocity vectors were normalized by max-

imum local velocity in the flow fields. At the first time

step corresponding to (I), the fluid flow in the annulus,

where the vortex center (the position with the maximum

value of the stream function) rises to the upper portion

and forms a stronger circulation of core region in the

clockwise direction, the isotherms quickly distribute

near both the upper vertical axis-symmetry and upper

outer spherical surface, which implies that the local con-

vective flow on the heat transfer presents this region at



Fig. 3. Isotherms (left) and streamlines (right) for R* = 2.0, Pr = 0.7 and Ra = 105 at different micropolar parameters F = 0, 1, 5: (a)

e = 0.625; (b) e = �0.625.
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the earliest, further indicating that the thermal plume

above the inner sphere forms concentric rings. When

the time step proceeds from (I) to (II), the fluid motion

expands and distributes gradually within the annulus re-

gion while the buoyant effect increases along inner

sphere wall and decreases along outer sphere wall. It is

demonstrated that the fluid in the close vicinity of the in-

ner sphere has lower density than that near the outer

sphere. Thus, the fluid near the surface of the inner

sphere moves upward while the relatively heavy fluid

near the outer sphere moves downward; the maximum

value of the stream function decreases gradually, and

the vortex center of eddy shifts upward above the hori-

zontal axis. When the time step proceed from (II) to

(III), the fluid motion within the annulus is wide and

uniformly distributed, which implies that the convective

effect cause to extend the isothermal downward to the

lower symmetric axis along the midgap. The maximum
value of the stream function decreases gradually, and

the vortex center of eddy shifts upward above the hori-

zontal axis. Finally, during a later time step proceed

from (III) to (IV), corresponding to the heat and flow

will tend to get a quasi-steady state that the maximum

value of stream function wmax = 42.693 and the angular

position of vortex center of the crescent-shaped lies at

h* = 40.5� from the upper vertical line symmetry about

midgap position.

Next, the isotherms, streamlines and velocity vectors

for the eccentric configurations considered in this study

are also examined. Figs. 5 and 6 illustrate the transient

isotherms, streamlines and velocity vectors at different

F for positive and negative eccentricity, respectively.

Common to all three geometries considered is the exis-

tence of higher temperature gradients as seen at the out-

er wall at h = 0� for higher values of the Rayleigh

number when a quasi-steady state is approached. The



Fig. 4. Isotherms, streamlines, and velocity distributions for Pr = 0.7, Ra=5 · 105, R* = 2.0, F = 5 and e = 0.0 at different time steps.
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presence of large convection at the higher values of the

Rayleigh numbers is demonstrated by the appearance

of temperature inversions mainly in the upper half of

each annulus. The effect of eccentricity on the flow is re-

vealed by comparing the different eccentricities, the iso-

therms and streamlines at fixed values of the Rayleigh
number, For the positive eccentric geometry in Fig. 5,

Within such a favorable configuration for convective

motion, it is evident that the convective flows are both

larger and stronger than those of for the concentric

spheres; the two spheres are very close to each other

along h = p near the lower symmetric axis. In this



Fig. 5. Isotherms, streamlines, and velocity distributions for Pr = 0.7, Ra = 5 · 105, R* = 2.0, F = 5 and e = 0.625 at different time

steps.
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region, the effects of convection are diminished, and the

shapes of the isotherms are largely determined by the

conductive mode of heat transfer.

The effect of negative eccentric geometry is shown in

Fig. 6. Here the convective cell center has moved toward

h = p. This cell is also less powerful than that in the con-
centric case. Clearly, in the top narrow midgap between

two spheres inhibits convective motion in the fluid. Thus

the isotherms show smaller temperature inversions when

compared to the concentric case in Fig. 4. The bottom of

the annulus (near h = p) exhibits an enlarged stagnant

region of fluid. In each case, the motion of the fluid is



Fig. 6. Isotherms, streamlines, and velocity distributions for Pr = 0.7, Ra = 5 · 105, R* = 2.0, F = 5 and e = �0.625 at different time

steps.
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clockwise. The region of almost stagnant fluids exist

near h = p, at the lower region, this zone increases in size

for the negative eccentricities because of the increased

resistance to flow. Since, the negative eccentric geometry

provides the least favored circumstance for the develop-

ment of natural convection. Both the size and strength
of the fluid flow are markedly reduced. Moreover, Fig.

6 shows an anti-clockwise rotating secondary cell in

the top of the annulus as time step proceeds (II) corre-

sponding to s = 0.02 while the primary central eddy is

clockwise. As the time step arrives at steady state, we

find that a multicell flow is predicted in which one
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secondary cell having a sense of rotation opposite to that

of the primary central eddy is formed. The secondary

cell was found near the top of the inner-sphere. These

phenomena were similarly stated by Caltagirone et al.

[19], who expressed that the muticellular flows occur at

critical Rayleigh number for the radius ratio 2.0.

As a result of the difference in streamlines, isotherms

and velocity vectors, the local Nusselt number also be-

haves differently. Figs. 7 and 8 depict the heat flux

behavior of the local Nusselt number along the inner

and outer spheres of three geometries considered for

two values of Ra. Examining Fig. 7(a)–(c) and 8(a)

and (b), we find that the local Nusselt number on the

outer sphere has a peak near the top of the annulus at

different micropolar parameters for the concentric, the

positive eccentric and negative eccentric annulus at low
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Fig. 7. Local Nusselt numbers distribution on the inner and outer sph

parameters F = 0, 1, 5: (a) e = 0.0; (b) e = 0.625; (c) e = �0.625.
Rayleigh number. The peak value increases with an in-

crease in Rayleigh number. For the negative eccentricity

in Fig. 8(c), the local Nusselt numbers on the inner and

outer sphere have minimum and maximum values,

respectively. The generation and development with the

different micropolar parameters of the maximum and

minimum values will be oscillated near h = 30–55�. It

is implied that the secondary flow taken place on the

top of the annulus is also weak, although the Rayleigh

number was increased to 105. This secondary cell leads

the fluid into a narrow gap being unfavorable convec-

tion motion.

Figs. 9 and 10 show the steady skin-friction coeffi-

cients Cfi,o vary with h. When compared with that at

fixed value of F, it is obvious that both absolute value

of jCfij and jCfoj increase with Ra for a given values of
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Fig. 8. Local Nusselt numbers distribution on the inner and outer spheres for R* = 2.0, Pr = 0.7 and Ra = 105 at different micropolar

parameters F = 0, 1, 5: (a) e = 0.0; (b) e = 0.625; (c) e = �0.625.
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R* = 2.0 and Pr = 0.7. These were to be expected, since

the magnitude of buoyant force and hence the strength

of the convective cells increase with Ra. Eq. (7) shows

that there are two important parameters. They are the

velocity gradient and the vortex viscosity that influence

the skin-friction coefficient. It reveals that, for a Newto-

nian fluid, the effect of the velocity gradient on the skin

friction coefficient is more pronounced than that of the

vortex viscosity, while for a micropolar fluid the oppo-

site is true. Fig. 9 demonstrates a set of typical steady

skin-friction coefficient distributions on the spherical

surface at fixed low Rayleigh number is 103. As F in-

creases, it implies that the vortex viscosity increases for

a micropolar fluid. The effect of an absolute value of

the skin-friction coefficient jCfj increases with increase

of the vortex viscosity but decreases with weak motion

of fluid under low Rayleigh number. Finally, Examining
Fig. 9, we see that at any h position, the total jCfi,ojon

the spherical wall of the inner and outer spheres almost

decreases with increasing F for three different eccentric

geometric structures. When the Rayleigh number in-

creases to 105, as illustrated in Fig. 10, curiously, the

jCfoj does not decrease with increasing F. These trends

do not extend to the outer sphere at three geometric

eccentric structures under this high Rayleigh number.

It implies that the micropolar parameter effect to the va-

lue of jCfoj does not regularly comply with the Rayleigh

number which was changed. The location of the maxi-

mum absolute value of the skin-friction coefficient shifts

upward to near h = 25� for inner sphere jCfijmax and near

h = 85� for outer sphere jCfojmax; these trends are appar-

ent in Fig. 10(a) when the eccentricity is 0.0. The case of

the positive eccentricity e = 0.625 is shown in Fig. 10(b),

the jCfijmax near h = 15� and jCfojmax near h = 75�. When
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the negative eccentricity e = �0.625 is shown in Fig.

10(c), the jCfijmax near h = 55� and jCfojmax near

h = 90�, besides, for the negative eccentricity, as F = 0

and 1, we find several peak values Cfi and Cfo, near

h = 15�, which is exactly the position of second flow cell

in the counterclockwise direction.

The circumferentially averaged Nusselt numbers at

steady state obtained in the present study are given in

Table 2, for various Rayleigh numbers in the three annu-

lar geometries and three different values of F under con-

sideration. As the Rayleigh number increases beyond the

conduction regime, the curves beyond the pseudocon-
duction region are straight lines on log–log coordinates.

Nu can be correlated via a least square regression analy-

sis in the form

Nu ¼ CRam ð21Þ

for Pr = 0.7 and R* = 2.0, where the constant values of

C and m are listed in Table 3 for the three configurations

and F values considered here.

Average Nusselt number Nu vs. Rayleigh number is

plotted in Fig. 11 for a diameter ratio R* of 2.0. When

compared to the different eccentricity at fixed value of

F. It reveals that the positive eccentricity can improve
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the average Nusselt number, but the negative eccentric-

ity may not promote the convection effect. From other

viewpoint with a fixed eccentricity compared to the dif-

ferent value of F, it visualizes that average Nusselt num-

ber Nu decreases with the increase of F at the overall

Rayleigh number.
5. Conclusions

The transient natural convection using a micropolar

fluid and Newtonian fluid in concentric and vertically
eccentric spheres with isothermal boundary conditions

have been analyzed numerically by a finite difference

method. The transient developing series of the heat

and fluid flow in the annuli have been visualized by

means of contour maps of isotherms, streamlines and

velocity vectors. Both the micropolar fluid and the New-

tonian fluid in the positive eccentric geometric structure

can enhance convective heat transfer rates, but the neg-

ative eccentric geometric structure provides the least fa-

vored circumstance for the development of natural

convection between two spheres in the annulus. The

average Nusselt number increases with Rayleigh number



Table 2

Average Nusselt number

e R* = 2.0, Pr = 0.7

103 5 · 103 104 5 · 104 105 5 · 105

F = 0, Nu for Ra

0.625 1.3338 1.7478 2.0230 2.9341 3.4620 –

0.000 1.1003 1.6341 1.9601 2.8906 3.3851 4.9147

�0.625 1.2464 1.5761 1.8091 2.6427 3.1887 –

F = 1, Nu for Ra

0.625 1.2092 1.5746 1.7999 2.5842 3.0584 –

0.000 1.0309 1.3828 1.6916 2.5456 2.9874 4.3218

�0.625 1.1924 1.4166 1.6056 2.2733 2.7343 4.1606

F = 5, Nu for Ra

0.625 1.1650 1.3700 1.5368 2.1350 2.4944 3.6949

0.000 1.0050 1.1069 1.3038 2.0732 2.4621 3.5272

�0.625 1.1432 1.2627 1.3783 1.8715 2.1833 3.3174

Table 3

Empirical constants and deviations for Eq. (20)

e C m Ra Max.

deviation (%)

F = 0

0.625 0.30236 0.20971 103–105 3.49

0.000 0.20997 0.24126 103–5 · 105 1.18

�0.625 0.28377 0.20647 103–105 5.22

F = 1

0.625 0.28662 0.20326 103–105 3.48

0.000 0.19389 0.23657 103–5 · 105 3.61

�0.625 0.26021 0.20516 103–105 9.97

F = 5

0.625 0.28674 0.18924 103–105 9.03

0.000 0.19394 0.21807 103–5 · 105 1.30

�0.625 0.30188 0.17442 103–105 1.19
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Fig. 11. Average Nusselt number as function of Rayleigh

number for Pr = 0.7 and R* = 2.0 at different micropolar

parameters F = 0, 1, 5.
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in each eccentricity displacement, but decreases with

increasing F at fixed eccentricity for each Rayleigh num-

ber. From the micropolar parameter effect has been

known that the heat transfer rate is lower for the micro-

polar fluid than that for the Newtonian fluid certainly.

Under a low Rayleigh number, the skin friction force

acting on the wall with the Newtonian fluid is stronger

than that with the micropolar fluid. On the contrary, un-

der a high Rayleigh number, the skin friction force act-

ing on the outer spherical surface with the micropolar

fluid is stronger than that with the Newtonian fluid evi-

dently. According to the above results of numerical cal-

culations can be applied to the realistic case of solar fluid

heater. As the thermal energy storage cell is filled with

micropolar fluid. It will be improving the thermal energy

storage performance because it keeps warmer than the

case that is filled with the Newtonian fluid.
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